Каталог товаров
Заказать звонок
Каталог
Оптическое и геометрическое увеличение микроскопа

Оптическое и геометрическое увеличение микроскопа

Увеличение системы — важный фактор, в основе которого лежит выбор того или другого микроскопа в зависимости от решения необходимых задач. Все мы привыкли к тому, что проводить контроль полупроводниковых элементов необходимо на инспекционном микроскопе с увеличением 1000 и более крат, изучать насекомых можно, работая с 50 кратным стереомикроскопом, а луковые чешуйки, окрашенные йодом или зеленкой, мы изучали в школе на монокулярном микроскопе, когда понятие увеличения еще не было нам знакомо.

Но как интерпретировать понятие увеличения, когда перед нами находится цифровой или конфокальный микроскоп, а на объективах стоят значения 2000х, 5000х? Что это означает, будет ли 1000 кратное увеличение на оптическом микроскопе давать изображение, аналогичное цифровому 1000 кратному микроскопу? Об этом вы узнаете в этой статье.

Оптическое увеличение системы

Когда мы работаем с лабораторным или стереоскопическим микроскопом, подсчет текущего увеличения системы не составляет труда. Необходимо перемножить увеличение всех оптических компонентов системы. Обычно, в случае стереомикроскопа это объектив, трансфокатор или увеличительный барабан и окуляры.
В случае обычного лабораторного микроскопа дело обстоит еще проще – общее увеличение системы = кратность окуляров умноженная на кратность объектива, установленного в рабочую позицию. Важно помнить, что иногда встречаются специфические модели тубусов микроскопа, имеющие увеличивающий или уменьшающий фактор (особенно распространено для старых моделей микроскопов Leitz). Также, дополнительные оптические компоненты, будь то источник коаксиального освещения в стереомикроскопе или промежуточный адаптер для камеры, располагающийся под тубусом, могут иметь дополнительный фактор увеличения.

Оптическое и геометрическое увеличение микроскопа
Дополнительные оптические компоненты иногда имеют свой фактор увеличения, отличный от 1. В данном случае, коаксиальный осветитель (поз. 2) стереомикроскопа Olympus SZX16 имеет дополнительный увеличивающий фактор 1,5х.

К примеру, стереомикроскоп Olympus SZX-16 с окулярами 10х, объективом 2х, трансфокатором в позиции 8х и блоком коаксиального освещения с фактором 1,5х будет обладать общим оптическим увеличением 10х2х8х1,5 = 240 крат.

Оптическое и геометрическое увеличение микроскопа
Принципиальная схема получения изображения на световом микроскопе. Окуляр увеличивает изображение, построенное объективом и формирует мнимое изображение.

Под оптическим увеличением (Г) в таком случае следует понимать отношение тангенса угла наклона луча, вышедшего из оптической системы в пространство изображений, к тангенсу угла сопряженного ему луча в пространстве предметов. Либо отношение длины, сформированного оптической системой изображения отрезка, перпендикулярного оси оптической системы, к длине самого отрезка

Геометрическое увеличение системы

В случае, когда у системы нет окуляров, а увеличенное изображение формируется камерой на экране монитора, к примеру, как на микроскопе ADF F20, следует переходить к термину геометрического увеличения оптической системы.
Геометрическое увеличение микроскопа – отношение линейного размера изображения объекта на мониторе к реальному размеру изучаемого объекта.
Получить значение геометрического увеличения можно перемножив следующие величины: оптическое увеличение объектива, оптическое увеличение адаптера камеры, отношение диагонали монитора к диагонали матрицы камеры.
К примеру, при работе на лабораторном микроскопе с объективом 50х, адаптером камеры 0,5х, камерой 1/2.5” и, выводя изображение на монитор ноутбука 14”, мы получим геометрическое увеличение системы = 50х0,5х(14/0,4) = 875х.
Хотя оптическое увеличение при этом будет равно 500х в случае 10х окуляров.

Цифровые микроскопы, конфокальные профилометры, электронные микроскопы и другие системы, формирующие цифровое изображение объекта на экране монитора оперируют понятием геометрического увеличения. Не стоит путать это понятие с оптическим увеличением.

Разрешение микроскопа

Широко распространено заблуждение, что разрешение микроскопа и его увеличение связаны между собой жесткой связью — чем больше увеличение, тем более мелкие объекты мы сможем в него увидеть. Это не верно. Самым важным фактором всегда остается разрешение оптической системы. Ведь увеличение неразрешенного изображения не даст нам о нем новой информации.

Разрешение микроскопа зависит от числового значения апертуры объектива, а также от длины волны источника освещения. Как вы видите, параметра увеличения системы в этой формуле нет.

Оптическое и геометрическое увеличение микроскопа

где λ — усредненная длина волны источника света, NA – числовая апертура объектива, R — разрешение оптической системы.

При использовании объектива с NA 0,95 на лабораторном микроскопе с галогенным источником (средняя длина волны порядка 500 нм) мы получаем разрешение около 300 нм.

Как видно из принципиальной схемы светового микроскопа, окуляры увеличивают действительное изображение объекта. Если, к примеру, повысить кратность увеличения окуляров в 2 раза (вставить в микроскоп окуляры 20х) — то общее увеличение системы удвоится, но разрешение при этом останется прежним.

Важное замечание

Предположим, что у нас есть два варианта построения простого лабораторного микроскопа. Первый построим, используя объектив 40х NA 0,65 и окуляры 10х. Второй же будет использовать объектив 20х NA 0,4 окуляры 20x.

Увеличение микроскопов в обоих вариантах будет одинаковое = 400х (простое перемножение увеличения объектива и окуляров). А вот разрешение в первом варианте будет выше, чем во втором, так как числовая апертура объектива 40х больше. К тому же не стоит забывать о поле зрения окуляров, у 20х этот параметр на 20-25% ниже.

Последние публикации

Показать все
Как проводить измерения на микроскопе? Часть 2
Как проводить измерения на микроскопе? Часть 2
2. Измерение линейных размеров с помощью окулярного винтового микрометра. Эта статья - вторая часть статьи…
Как проводить измерения на микроскопе? Часть 1
Как проводить измерения на микроскопе? Часть 1
Содержание 1. Измерения на микроскопе линейных размеров с помощью штриховой пластины в окуляре (окулярного микрометра).…
Поляризация света. Поляризационная микроскопия
Поляризация света. Поляризационная микроскопия
Поляризационная микроскопия, описание методики. Солнце и практически все искусственные источники света излучают световые волны, векторы…
Показать все
Подберем лабораторное оборудование для работы
Подберем лабораторное оборудование для работы
Закажите лабораторное оборудование указав контактные данные и мы с вами свяжемся в ближайшее время.

Этот сайт использует cookies.